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ABSTRACT

4 Presonted 1a this report are toltal and pevturtation sa.
degree of freedom equations of motion and tueidr G:rivations.
Magnus force and moment were considered nepgligivie and nog
included in this dexivation, however, when deslred they can
be incorporated in the existing models. Definiticns oL control
force, yravity, thrust and cdamping terms are presented in general
form so that various control schemes and particular functions of
the tetm; can be utilized without estensive modification to the
equations of motion. These equations may be programmed on a large
scale digital or analog computer.

The majority of the work presénted herein wos develeped for

previous programs and adapted for use in thes Penetration Ajds Program

under Air Force Contract AFU4 (bY4)=-25,
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OBJECT:
The object of this report i: Lu derive und present .lX-dogrecsoi-lecaot

equetions of motion for a rixld ballictic miscils,

INTRODUCTION:

Flight mechanics problems involving non-spinning vehicles can be solved,
in general, with dynamical equations which are independent of the vehicle's
point masas trajectory. 1In the spinning body problem, however, the orientation
of the vehicle and its motion are mutually related a2z a result of avrodynamic
and inertial coupling and, therefore, must be studied with a six-degree-ol-freedonm
modal. This report presents the derivation of several six.de;ree-of-freedom
models for a general problem. It has been assumed in this derivation that the
earth is spherical and non-rotating und that body spin rate: are small enouch
to neglect Magnus {orces.

Tﬁe c.g. fixed part of the motion of the body is exprecsed non-holonomically,
in equations (3), as dynamical equilibrium aoout any three right-handed,
orthogonal certesian axes fixed in the body. The coordinates, p,q, and r, of
equations (3) ere known classically uas the rectilinear, but nan-holonomic
coordinates of rigid body rotation dynamics. These coordinate: can be exprei;sed
in terms of holonomic, but curvilinear coordinates such as Eulerian Angles.
Equations (4) represent transformation or p,q, and r to the particular kulerian
Angles ;ZJ, 6; , and ’Z’. By means o1 transformation (&), the dynamical
equilibrium expressed non-holonomically by equations (3) can be reexpressed
holonomically as it is in equations (5). The dynamical equation: tor body rotution
are non-holonomic in p,q, and r becsuse tne inertia term: in (3) are only once

integrable without the adjunction of equations (4).



Immediately subsequent to equations (4), in this report, the question of
what coordinates to use is decided. Two approaches, designated momsnt derivation
A and moment derivation B, are adopted. The starting points for these are
equations (5) for A and equations (3) for B. In both "derivations", the applied
torque terms are expressed in terms of Eulerian Angles, ;ﬁ ’ 69 , and st .

Only in A, however, are the inertia terms also expressed in ZZ ’ 69 , and GZs .
An interim result in A is equations (18) which are a direct combination of the
inertia terms of equations (5) with the applied torque terms of equations (17).
Equations (19) through (25) are concerned with the translational equations

of motion of the body in the space~fixed coordinates, x, y, and 2z of translation
and in the space-fixed coordinates @L 3 é? , und ﬂs of orientation. Equations
(18) together with equations (25) constitute a complete set of holonomic, but
non-linear, dynamic, six-degree-of-freedom equations of motion of the rigid body
in the ‘all-space-fixed coordinates x, y, z, & , © , and ng . Because the
individual rotation equations of this system represent dynamical equilibrium of
components along body-fixed axes, only constant-valued second and product moments
of inertis occur, Eguaticns {18) plus squations {25), au a sysiem, are incomplete
in that flexible-body degrees-of-freedom are excluded and are inexact in that

(1) magnus forces are neglected and (2) a spherical, non-rotating earth is assumed,

Further development under m ment derivation A is desirable because bodies
either symmetric about the roll axis or nearly symmetric about the roll axis are
a frequent object of dynamical analysis. In the translational degrees-of-freedom,
bodies with roll symmetry can be governed no more simply ihan by equations (such
as equations (25) which govern unsymmetrical bodies, In the rotational degrees-
of-freedom, however, a form sinpler than equations (18) is possible for the roll
symmetric body. Such symplificaticn obtains by the following reasoning. Instead

of equations (18) which represent dmamic equilibrium of components of applied



torque along body~fixed axes with components of tie applicable, reactive, inertis
torques along the same axes, equations #1ll based on % , & , ana ¢ but
specifying dynamical equilibrium of corresponding components along any suit-

ably limited set of three axnl‘can be used with equal efficacy to fix the
rotational behavior of the unsymmetrical body. In general, & (pre-solutiom)

choice of component axes fixed-in-space tends to produce an inertiaily uncoupled
set of equations, dbut also leads to variable second and product moment of inertia
cosfficients. Constant-inertia-coefficient equations applicable to tﬁ. unsymmetric
body require & choice of component axes, such as that choice resulting in equations
(18), which follow the body in yaw, pitch, and roll, For bodies symmetrical

to the roll axis, a choice of component axes which follow the body only in yaw

and pitch gives constant-inertia-coefficient equations with a form less inertially
éoupled than equations (1i),. The x', y', and z' axes system follows the body in
yav, pitch, and roll while the x,, y;, and z; axes system follows the body only
in yuw.and pitch, Bquations (26) express, for any static moment vector, components
aloﬁg the 4nstantaneous x,, y;, and z; axes in terms of components along the
1hstantaneous x', y', and z' axes. Application of equations (26) to the inertia
torque terms and to the applied torque terms of equations (18) yields equation

dr dynsmic equilibrium in rotation about the x; , y; , and 2; axes. These
equations are valid for the unsymmetric body. Subsequent specialization to the
roll aymetric body is readily accomplished by setting every second moment of
inertia about any uxis perpendicular to the roll axis equal to a aingie value,‘I,
and by setting all product moments of inertis equal to zero, The result is
equations (27) vhich are exact for the roll symmetric body in the same sense that
equations (18) are exact for the unsyﬁnatric body. Equations (25) toaether'with
equations (27) constitute a complete set of holomomic, but non-linear, dynanic,
six-degree-of -freedom vquations of motion of the roll-symmetric, rigid bedy in

the all-space-fixed coordinates x, y, 2z, ¥ , & , and Q‘ . Decause the

individual rotation equations of this system represent dynamical equilibrium of

3.
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components along axes which follow the body in yaw and pitch, and because they
are based on the assumption of roll-symmetry of tae body, only constant valued
second moments of inertia occur and product moments of inertis do not occur at all.
Continued development undev moment derivation A consists of forming pertur-
bation equations of motion from the system composed of equations (25) together
with equations (27). This is accomplished by subtracting equations corresponding
to a standard, zero angle of attack trajectory from equations (25) and (27).
For this standard trajectory, equations (25) and (27) reduce to equations (28).
When equations (28) are subtracted, then, from equations (25) and (27), the
result is equations (29) which are the desired perturbation equations of motion.
For applications to roll-symmetric bodies and where the yaw angle, ¢ , and
the miscellaneous angles & and A, are small enough to linearize,
equations (29) reduce to the (approximate) equations (30). Equations (31)
through (34) are concerned with introducing the parameters O-/P and O(Y and
with further linearization of equations (30). Equations (34) are the final
result under moment derivation A and represent approximate equations of motion

for the roll symmetric body. Assumptions incorporated in equations (34) and
13 . e L]

— ) -
not incorporated in equations (30) are that ( & — Qs ), X 2 ) —y—vﬂ ’
L] L] .

174
and —é—v-az are small enough to linearize.

Under moment derivation B, only the rotation equations are treated. The

translational equations are the same for B as for A. Equét.ions (35) are a set
of three, non-holonomic, six-degree-of-freedom equations for dynamic equilibrium
of torque components along the x', y', and z' axes system in nine coordinates ’
P, Q, T, X, ¥, 2, {/ ’ 6 , and ¢ « Together with the three translational
equations (25), and with the three “"constraint" equations (4), equations (35)

form a complete set of nine, non-holonomic, six-degree-of-freedom, equations of



motion spplicable to the general, unsymmetric, rigid body. Equation (35) are
formed by setting the applied torque terms of equations (17) equal to the reactive,
insrtis torque terms of equations (3) and rapresent dynamic, rotational equilibrium
about axes which follow the body in yaw, pitch, and roll,

For the roll symtx ic body 1'n mot.iou lineariznble with reapect to ;[ /4? »
/éf (9"&) ) ’ o> 3. ’ md.—é%— , equations (36) supplant
equations (35) for cxpreuing rotational equilibrium and equations (34a), (34b),
and (34c) supplant equetions (25) for translational equilibrium. Equations (36) differ
from 344, 34e, and 3Uf, not only because of the use of p, q, and r in expressing
the reactive 1nertiu» terms, but also because equations (36) represent dynamic
cqu.:llibriun about axes which follow the body in yaw, pitch, and roll while
equations 3hd, 3le, and 34f represent dynamic equilibrium about axes which follow

the body only in pitch and yaw.

CORCLUSIONS:
It is concluded that this report presents useful forms for the following
sets of equations.
Eqns. (18) Total rotational equations in terms of Eulerian angles.
Eqns. (25) Total translational equations along space fixed axes.
Eqns. (29) Simplified six-degree-of-freedom perturbation equationms.
Egns. (54) Linearized six-degree-of-fresdow perturbation equations.
gqns. (35) Total body moment equations in terms of body angular rates.
Eqns. (36) Linearized bod: momeént perturbation equations in terms

of dbody angular rates.




Derivation of the Equations of Motion

The translational equutions of motion ere written with respect to a
spaced fixed axes system in order to measure true accelerations in fixed
space to which Newtonian laws cpply. The moment equations are written
relative to body fixed axes with origin at the center of gravityland
parallel to the axes of symmetry of the body. Body fixed axes elininate
the. need for considering the moments cf inertia as a function of vehicle
orientation. The thrust, control force, gravity, and damping definitions
are general since they will be uniquely defined for each problem. The

moment or rotational equations of motion are considered first.

Section I - Rotational Equations of Motion

From reference 1 and 2 the moments of momentun of a missile about its
bndy fixed axes system are defined as:

Moments of Momentun

be * Py = Gl = F o

O bl —p . =

b,a‘f-l;n .‘f\-j‘:‘l —?Jm
From figure 1, the moments about the body fixed axes, defined as the rate of

change of moment of momentum about those axes, are expressed as:
dhy
MRo1l (Body) Lok~ byt + 4y q

() Mpyten (Body) %?‘ ~hgp + /’x‘ r

“Wew (Body) .52/’“- he@ +h.p

LT TR



Substituting equations (1) into cquations (2), presents the body

moment equations in the forn:
o1y o PIit (PP-G) Ty =(F +PP G +(r*-§) T +¢r@Es T)

(3) ¥pseen « QIy +(Pg-F)Tvr - (PHEV) Tiv + (P-7) Jai +p(Tu-Ta)

Mav o J Ly +(@r-f) T - (§HTPITE + (G- ) Tar' + v L)

In these equations the terms contuining the time derivatives of moment of
inertia have been neglected.
The angular rates about the body axes i{n terms of Eulerian angles are

shown from figure 2 to bte:

¢ —yp dirve

P =z
(%) Q= 65 Coa ¢ 1#—ji>a¢$¢>!l-é?-ﬂ£4>rl)§6
ra )&ﬂwé&tﬂ—é‘d""’fﬁ

At this point in the derivation e choice must be made to proceed by
either expressing body moment in terms of Eulerian angles and their rates
or in terms of body sngular rates and accelerations. Both are presented,
however, the former is taken first in this report. The derivaticns will be

labeled A and B for their recpgctive occasion in the report.

Moment Derivation A

Substituting the values of p, q, and r as defined above, and their

derivatives into equations 3, the body moment equations becoues:
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Applied Moment
The total applied moment about & body axis 18 comprised of an

aerodynamic force moment, a comtrol force moment, & thrust vector

misalignment moment, and a damping moment. This can be written in equation

form as:

6 My * Magee. ¥ Mee +My,, +M,

1. Aerodynamic Moment

Moment is expressed in vector analysis as:
M AXF
b 7t Xy -
Letting 4%"‘_’_ 11/&’. +_del/z..

Ay =
und_ . p -
fasea® £ ;‘\'Evm* ¥ ""—hmo +4 /e_“

Ye
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whereﬁ‘ is the vector from the body(G, to the application of the aerodynamic force
and where i', J', and k¥’ are unit vectors along the body xf, y' and 2’
ixesyrespectively.

The above cross product has the following components:

[E;un Ry = f;;luo /Zz]

D Wi+ [Fiure M = Fipns |
Mraero = [F;tkuo.)ly' "' F;umfc"__]

The aerodynamic forss_ components as shown in fig_x.xre 3 ére:

’
M"aero

F“"‘_“. F;l .'k‘ F;’;m- 'FN .’é:’ F’;A(lo' _D.
where:

b d - —— '7. b . ':. ._—.- o‘ —t

= En_Q.A__ vax')x 4'] AND \/= X A +y3+ztc
,\dadumu-‘

With the vector transformation on figure 2, velocity can be expressed

along body axes so that Fy becones:

s, Gu@A_ {‘ [k@¢memw-m¢@w),
" i | +V(Cond Cony +40 e dinry)
+ & Aiw o CoaB |
_z[;( (o0 6 4ir06 Cowp +Ainp L Y)
4y (Cow P Aiw O b P — Aimp Loty
+ = 0044’@0"’-9]
The y'and z'component.s are: .
L .7 . SNGA [LX(aingdine losp—Conpdim))
o) Fu-g | (‘"’I[ -?(&m@ mw+M¢M9MW)
.-;_'z adA'/)t)Lb CO-@Q]
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The moment arm components are defined as:

ry's =(CG-CP) where CG and CP are mecsured from an aft reference point
(9) Tyl = Pa¥ CPy'

rzpt A sz‘

Pay CPy‘ and A CP,r include the misalignment of the center of pressure and

the center of gravity.

Substituting equations 8 and 9 into equations 7, presents the applied

moment due to an aerodynamlc force.
o it ol et
| Y (Cowp im0 Ay —implos )
(10a) IVI\

-=
Vi Co.q_¢ Co:a.ej

+ACP, - L%I@.;,w,uue wa-&mb&-dy')
+'.?\71(0m¢ Coop +A&~¢A‘;'°9M9
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2. Control Force Moment

This moment is the result of control forces obtained from either reaction

Jet or external movable fins applied as in diagram 1. ‘
x

¢

p Diagram 1

F:.,—F; =t:i?Fc ez """x""*/’j

— —t — 2 ’-X./X;'*.“.,h

w R, & =t £E R
. /L.ﬂl'c' -'A?’Xc—i




The control motrent {s defined as:

0 Me =SH XE

Evaluating each individual cross product gives:
Azex Fp = Fp (+X)& ~Fh 4/
;E;;¢)( ;i; - Fx fl-i: + Fx Xc¢ if

L - y

X B = Fmxhd — Fpx. 4

—

(13)

it

')i;!’< Foe = Far Xe 1£’ - Firl1-2? »

A summation of the individual control momsnts ahout the body axes produces

the following equations:

(l‘bl) "Croll . h (- Fx ".Fi +FE - ,.;)
(1kv) Mepsecn = Ke ( Fe + F;,)

(1h¢) Morer * "‘xc(F;'PFg)

The moment produced by a aanted, displaced thrust vector can be derived

as follows:

13.

o e i - —— - < . e e e



Diagram 2

A»

The moment is expressed as:

Mrn =/tr X Fr
vhere from di_a.gram 2:
ty = -,z’xr+1 av, +rA a2,

Fr o T 5 Crapolrad + A Frlosfs dingy + A Fr e for

Taking the cross product, the moment becomes:

(15) Mon = A FF.- k)av-(~ {)Az:-l +4 [(F, A')azr +(Fr *)XJ
~& [(FPxrt (7L 2y,

The body axes components of the moment due to the thrust vector are then:

Mroir  « AY, Fr diogy - A2y R Cotfp diwby

a6) MI'plt.ch - AZE,Fp Cd“d-ﬂ,c&d«pr 'f'xrf;‘&"‘)pf

v o —Xrh Coafadiwfy = AV, £; &oﬂf&dﬁr

14,
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4. Damping Moment

It remains only to define the aerodynamic damping moments adbout the x’ ’
Y’ and 2° axas and these are My, Mdyl, and Md respectively.

The total applied moment is the sum of the individual moments derived
previously, for equation 6.
Theretore:

Body roll moment

= Heon1 &S:? {A;&[-,{‘L,,(mqamcuw +Ainsp dinsy)
~ (Conddine dimy ~Ains$ Cowy)

-2 Coa & Co-wej
(17=) iVl

A gt
 +Y (Cradleny + MueMI)

+2 Lo Codg]}

+h[—r, + Fe + F;;—F,J
+ AYr Frdiwfp — A2 rFr Codfy diwfr =M d

Body pitch moment

= Mpven = ~DAGPy + X LF‘ + Fz_—j
+C » Mjﬁﬁ%l(m¢woac y +hw WB
(170) P‘Wod 7%1(&4 ¢MMV—MC’M )9
Beescoas]
+AZrFrCoufploa fy + )(rﬁ;.,&,dle, —M/’,I

15.




Body Yaw Moment

2 M, =002~ K[F+5E]
QA0 Ca

—CP
¥ Lined |~ D /[V/ /“'Lfﬁ*wé’m?ﬁ—fﬂaﬁwiﬁ)
/V/ L leorch cez . -/‘AongSmahbﬁ)
-/-/'7/ Adu% e, 9_/
-X-k e-'aa./dp 4««74 -y £ m/J’P c"’-Ar

(l?c)

5. Total Rotational Equations of Motion

The total rotational equation about he roll axis is found by equating

the (X MJEW-L term) in equation l7a to trat in equotion Sa and dividing by roll

nonent of  inertia.
P ainb=-p6cad
+ 45—-‘—'— e¢(m P sin ¢)u19+¢c‘a.aau¢M¢05m¢M:¢/
- 5%1/4 o O con =Y Osir Ol — O dim, p —F eor B0 Ot
+ im (246 sin O sin b — G oz 6. sive Ocon fmbcarp—FcnBand)
ot :‘a /¢ 3B (oo’ = sis ) =AY cra P tim 6 Yo Y’ )j
foji /% LB carfoinOerd 4sinin )

rz?/gm¢.4-$h9/ﬁ:n /8 — A ¢C¢L¢)
+f}7f cor@ con 9]
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~AYeR dips +47, £ Coa@n by +7gr = O
Ly Ly TLa

Likevise equating the %tch term) in equation 1Tb to that in equation 5v
and dividing by the pitch axis moment of inertia, produces the body pitch
axis rotational equation of motion.

6 Cop -6 A+ ¥ Cosodent ~ Y6 diruoling + pilotalesd
+ .r:i':.r-)(bfxlcmo Coop~ b insf = 54k Coon Crop 1 i ind)
= .

' % (628 pbins + ¥ A6~V loa'000ad
»

+ 2960o00lop divg - 6°4r 2
" (§ ki -2iptmg b=kt
A ¥ (6cop +268Con + 204 Conodinsp - Yoo ot
Ty - y;x,d,;,)ac'oua,du)ﬁg
*D.Ach —%[F‘, +Fp ]+ ‘Qg_l;v:

SRR oetinstooy tdiopiny)
Y, (Co pdins odiny ~Ainif lrty)
+£ Coaploas]

~AZYE. (oaf, Coafy —Xy fr dinfin = O
xy Ly’
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The rotational equation about the tody yaw axis is derived by equating the

(EM yaw term) in equation 17¢ to that in equation 5¢ and dividing by the

yaw moment of inertia.
VW Cos o Coop=WO 1n8 Coug - b Y (006 dirg -6 dimsp ~ 6 Loud

+( Ly'- )(¢a€oa¢ +¢ﬂ‘J Covo dmp- Pwdbfi%abﬂé“‘@

- o 5 (8- pain + 6 Coupling - 28 Cres Cov'p
) low's dup b))

- Jve y
6 Con 1 201 low 6lrp - 26 pAdinp
( g — Y din6 Covo Coof -H"a”’d‘*’#)

+ Iy’ (9‘&«;% +26yCoud Couoduwd - ¢" +2¢y Ao
+¥{Cod's diip - Awe})

“D.ACP'
+Xc|Fxt+F=[ + /
Iy f‘i[: -.:] Mde

: ]
(18¢) :

- C.»QAD CCP) X (finp AinB L0 ~ CMMW@
MMII.;( )[ (MMW+M¢MGMﬁ

+ X rFr-Qo«LﬂpMﬂv +

Ly

AY, F =
_—;:'-;T- C’m,é}. Crefy = O

18.



Section II - Translational FEountions of M-tion

The total translationa) equations of ™rtion,written with respect to the
space fixed reference system are now derived. The totsl acceleration along
eny space fixed exie will be due to the rum of the aerodynamic force, the
weight component, the control forces, and the thru:t component alony that

particular exis, divided by the maes. The force vector equations are:

- ——— =

FI-F“-.'" +A—A§'r+ E'i +f“£

- it - - -
1)  Fy * P4 tMard +R-d +T-4
B © F-E +T-K

F'-F.“..'K*-“%QZ"'C.
Ae mic Forces

By means of a vector trangformation the body aerodynamic forces are

defined along space fixed axes as:
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Bubstituting equations 8 into equations 20 results in the following:
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The vehicle weight, upace fived component: are: (ignorin; trajoctory twict)
m:tx = - m% LiroLL
mtp = 0O
7’?1.& = 7)73_ Coa L2

Control Force

(22)

The control force components along “pace fixed axes hre:
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Thrust
The thrust vector spaca fixed axes components are:
Fea = Fr Cot Br Couy los 9 Coa y
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The Total Translational Equations

The space fixed accelerations are now presented as the sum of components

of equat‘~:. 21, ., 23, and 2k divided by the mass term.
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Section III - Approximats Forms for Equations of Motion.

Preliminary Simplification

Although equations 18 and 25 are total equations and may be programmed
for very large digital and analog computer systems, they are complex and
cumbersome and can be simplified. The first step in simplifying these equations
would be to reduce the number vl terms in equations 18 by assuming that products
of inertia are negligible and that IY‘ ﬂl’ X J for most symmetrical
ballistic missiles. Further :implification is achieved by expressing body

axes moment along the X; Yy Z; axes with the following equations:
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M.’f. = '\4;.;'

(26) My, = My'toed - My Y

M = Mooy + Mrding

Incorporating the above assumption and substituting the expreasions for M, ,

M4 und M¢ into equations 26, yields the following rotational equations:
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Perturbation Equations

The perturbation equations are obtained by subtracting a standard, gzero angle
of attack trajectory, from equations (25) and (27). The standard trajectory :an

be described by the following parameters:

w-ﬂ.p-}é-'ﬁ-& -‘é-Y-V- )7-¢-¢:-$-o

Pitch angle, % = EE- -ﬁt 9 and for all but the steepest
trajectories: és - "I?t Xo 93" _Q; o
and therciore:
adﬁ.JOswCo-wi‘ X wm@, X = Xg

QO.‘O‘ .Mit ?:. = éc * = *‘
2 .aI' * = .x..
Control forces and misalignments are zero aloo.

Subatitution of these parameters into equations 25 and 27 gives the stundard

trajectory equations as:
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Subtracting equations (28) from equations 25 and 27 give the perturbation
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equations of motion as: (aaauminc Q, = Q)
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Linearized Perturbation Equations

Further simplification is achieved when all angles except &, ¢ » L end Gs

can be linearized,.

Incorporating this assumption with equations 29, the linearized

perturbation equations of motion are obtuined us:
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A Derivation of the components of angle of attack

The normal force, Fy, can be written in space fixed components by

- e =
expressing 'Vx 4_"“ X ,(" along spece fixed axes. The finel expression
is the following:
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il
Iocanu'xl is amall, the componeni slong the A2 axis is approximately equal to

Cy,,ad%au and the J component is approximately equal to C““QA &y
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Therefore:
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The Angles of Attack in pitch and yaw are defined
then as follows:
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The rates can be expanded to e standard rate and a perturbation rate as:
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Y = Ys + AY
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Substituting the above identities into e?uation 32 gives the. following:

(where (9—65) (42 / V") QY/V) and (A2 /V) are treated as snmll quantities
Just as ut/»)
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Wind offects cen be added to the Olpand @y equations. The terms in
equations 30 that can be further reduced by substituting @fp or oLy

whare possible are:
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Substitution of the above identities back into equations 30 presents the

linearized six-degree-of-freedor perturbation equations &s:
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Section IV - Body Moment Derivation B

The body moments as expressed in equations 3 cen be equated to the

respective applied moments of equations 17 to give the following equations:
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When the corresponding standard trajectory equations are subtracted from

those in equations 35, the perturbation equations of the body moments are

obtained.

The perturbation equations of body moments are simplified by incorporating
the same assumptions as in derivation A.
The resulting perturbation equations are:

Body roll moment
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Body pitch moment
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E_dy Yaw Moment
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Nowenclacure

Definition

Missile reference area

Gradient of the normal force coefficient
Normel force coefficient

Axial drag term

Reference diameter of missile
Aerodynamic normal force

Total aerodynamic force

Thrust of each control member

Engine thrust vector

Force with components in X, Y, 2 space axes

system

Axial distence between the center of gravity

end the center of pressure of the body

Acceleration due to gravity

Distance of control force from body fixed
longitudinal axis

Moment of mowentum about body roll axis
Moment of momentum about body pitch exis
Moment of momentum about body yaw axis
Moment of inertia about body roll axis
Moment of inertia about body pitch axis
Moment of inertia about body yaw axis
Product of inertia about body pitch axis
Product of inertia about body yaw axis
Product of inertia about body roll axie

Body roll rate
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Keg M
Kg M
Kg M
Kg M
Kg M
Kg M
Kg M.
Kg M

Bec
E€C
G€C
secz
68C
6ecC
Bec
sec

sec

rad/sec
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¥.6,0

Body pitch rate

Body yaw rate

Moment

Total aerodynamic hody moment

Moment due to the control system
Moment due to thrust vector misalignment
Missile weight vector

Mass of the missile

Damping mowment along body roll axis
Damping wmouent along budy pitch axis
Damping moment along body yaw exis

Dynamic pressure

Meen raedius of earth

Distance from the center of the earth to the
missile CG.

Initial distance from the center of the earth
to the missile CG.

Distance from body center of gravity to ap-
plicetion of thrust vector

Unit vector along space fixed X axis
Unit vector along space fixed Y axis
Unit vector along space fixed Z axis
Unit vector along body fixed X axis
Unit vector along body fixed Y axis
Unit vector along body fixed Z axis

Fulerian nngles of rotation of the body axes
around the X, Y, Z space fixed axee system

Angle at Lhe varth's center between initial

local vertical =nd the locel verticael at any time

rad/sec
rad/sec
Kg M
Keg M
Kg M
Ke M
Ke

Kg sec2/M
Keg M
Kg M
Kg M
Kg/m2

rad

rad



CP,

Thrust vector misalignment angles (see diagram 2) rad.

Standard trajectory Euler pitch engle
Total angle of attack

Components of @ LIn the pitch and yaw planes
respectively

Angle between the original local vertical and
the velocity vector :

Distance from body (.C. to application of thrust
vector parallel to the longitudinal body axis.

Distance along the body longitudinal axis to
the control force station from the body CG.

Missile velocity

Space fixed standard trajectory velocities
Body Eulerian axes systenm

Space fixed axes system

Dilplacemant'or the thrust vector in the
body Y'and 2°directions respectively (see
diegram 2)

Displacement of the center of pressure on
the Y axis

Displacement of the center of pressure on
the Z axis
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rad.

rad.
r‘d .

rad.

M/sec

M/sec



Moments of Momentum Referred to Moving Axis

Figure 1
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Coordinate System

NOTE.
)( Y 2 ARE SPACE F7XED AXES
X'YE ARE Booyr/xso AXES
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Aerodynamic Force
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Figure 3
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Weirht Vector Orienta: ion
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Figure 4
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Holmstrom, Mechanics

Kellner, Aeroballistics

Knauber, Mechanics (2)

Mair, Aeroballistics

Mavers, Aeroballistics

Miller, Aeroballistics

Niemi, Mechanies

Raggio, Aeroballistics

Singer, Machanics

Socks, Mechanics

Staszak, Aeroballistics

Thoupson, Mechanics

Watson, Mechanics

Tech Files (24)
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710
710
710
712
710
713
713
71k
713
71b
713
713
713
713
13
713
713
713
713
713
713
713
713
713



